3.1486 \(\int \frac{A+B x}{\sqrt{d+e x} (a+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=356 \[ \frac{A \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{a+c x^2} \sqrt{d+e x}}-\frac{\sqrt{d+e x} (a (B d-A e)-x (a B e+A c d))}{a \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{\sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} (a B e+A c d) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}} \]

[Out]

-((Sqrt[d + e*x]*(a*(B*d - A*e) - (A*c*d + a*B*e)*x))/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])) - ((A*c*d + a*B*e)*
Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]
*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[
a + c*x^2]) + (A*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[
1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt
[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.281557, antiderivative size = 356, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {823, 844, 719, 424, 419} \[ -\frac{\sqrt{d+e x} (a (B d-A e)-x (a B e+A c d))}{a \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{\sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} (a B e+A c d) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{A \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{a+c x^2} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]

[Out]

-((Sqrt[d + e*x]*(a*(B*d - A*e) - (A*c*d + a*B*e)*x))/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])) - ((A*c*d + a*B*e)*
Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]
*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[
a + c*x^2]) + (A*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[
1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt
[a + c*x^2])

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{A+B x}{\sqrt{d+e x} \left (a+c x^2\right )^{3/2}} \, dx &=-\frac{\sqrt{d+e x} (a (B d-A e)-(A c d+a B e) x)}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{\int \frac{\frac{1}{2} a c e (B d-A e)+\frac{1}{2} c e (A c d+a B e) x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{a c \left (c d^2+a e^2\right )}\\ &=-\frac{\sqrt{d+e x} (a (B d-A e)-(A c d+a B e) x)}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{A \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{2 a}-\frac{(A c d+a B e) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{2 a \left (c d^2+a e^2\right )}\\ &=-\frac{\sqrt{d+e x} (a (B d-A e)-(A c d+a B e) x)}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{\left ((A c d+a B e) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (A \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{\sqrt{d+e x} (a (B d-A e)-(A c d+a B e) x)}{a \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{(A c d+a B e) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}+\frac{A \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 3.31748, size = 525, normalized size = 1.47 \[ \frac{\sqrt{d+e x} \left (2 (a (A e-B d+B e x)+A c d x)-\frac{2 \left (\sqrt{a} \sqrt{c} e (d+e x)^{3/2} \left (-A \sqrt{c}+i \sqrt{a} B\right ) \left (\sqrt{c} d+i \sqrt{a} e\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+e^2 \left (a+c x^2\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}} (a B e+A c d)+\sqrt{c} (d+e x)^{3/2} \left (\sqrt{a} e-i \sqrt{c} d\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} (a B e+A c d) E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{c e (d+e x) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{2 a \sqrt{a+c x^2} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]

[Out]

(Sqrt[d + e*x]*(2*(A*c*d*x + a*(-(B*d) + A*e + B*e*x)) - (2*(e^2*(A*c*d + a*B*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[
c]]*(a + c*x^2) + Sqrt[c]*((-I)*Sqrt[c]*d + Sqrt[a]*e)*(A*c*d + a*B*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d +
 e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[
a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + Sqrt[a]*(I*Sqrt[a]*B - A
*Sqrt[c])*Sqrt[c]*e*(Sqrt[c]*d + I*Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]
*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e
*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(c*e*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(d + e*x)))
)/(2*a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.061, size = 1317, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x)

[Out]

(-A*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*e^
3*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*
x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)-A*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1
/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c*d^2*e*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-a*c)^(1/2)
*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)+A*EllipticE((-(e*x
+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d*e^2*((c*x+(-a*c)^(
1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/
2)*e+c*d))^(1/2)+A*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*
d))^(1/2))*c^2*d^3*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*(
(-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)-B*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c
)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*e^3*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-(e*x+d
)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)-B*EllipticF((-(e*x+d)*c/((-
a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e*((c*x+(-a*c)^(1/2))*e/(
(-a*c)^(1/2)*e-c*d))^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d)
)^(1/2)+B*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2)
)*a^2*e^3*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a
*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)+B*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e
-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*(-(e*x+d)*c/((-
a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)+A*x^2*c^2*d*e^2+B*x^2*a*c*e^3+A*x*
a*c*e^3+A*x*c^2*d^2*e+A*c*d*e^2*a-B*c*d^2*a*e)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/c/e/a/(a*e^2+c*d^2)/(c*e*x^3+c*d*
x^2+a*e*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x + A}{{\left (c x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x + A)/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a}{\left (B x + A\right )} \sqrt{e x + d}}{c^{2} e x^{5} + c^{2} d x^{4} + 2 \, a c e x^{3} + 2 \, a c d x^{2} + a^{2} e x + a^{2} d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*(B*x + A)*sqrt(e*x + d)/(c^2*e*x^5 + c^2*d*x^4 + 2*a*c*e*x^3 + 2*a*c*d*x^2 + a^2*e*x
+ a^2*d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B x}{\left (a + c x^{2}\right )^{\frac{3}{2}} \sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(c*x**2+a)**(3/2)/(e*x+d)**(1/2),x)

[Out]

Integral((A + B*x)/((a + c*x**2)**(3/2)*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x + A}{{\left (c x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x + A)/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)